Make your own free website on

Part 2

OSI Model

The Function


  Application – The application layer provides services directly to applications. The functions of the application layer can include identifying communication partners, determining resource availability, and synchronizing communication . Some examples of application layer implementations include TCP/IP and OSI applications such as Telnet, FTP, and SMTP, File Transfer, Access, and Management (FTAM), Virtual Terminal Protocol (VTP), and Common Management Information Protocol (CMIP).





Presentation –The presentation layer provides a variety of coding and conversion functions that are applied to application layer data. These functions ensure that information sent from the application layer of one system will be readable by the application layer of another system. Examples of presentation layer coding and conversion schemes include ASCII, EBCDIC, JPEG, GIF, TIFF, MPEG, QuickTime, various encryption methods, and other similar coding formats.


Session –The session layer establishes, manages, maintains, and terminates communication sessions between applications. Communication sessions consist of service requests and service responses that occur between applications located in different network devices. Some examples of session layer implementations include Remote Procedure Call (RPC), Zone Information Protocol (ZIP), and Session Control Protocol (SCP).





Transport – The transport layer segments and reassembles data into data streams. It is also responsible for both reliable and unreliable end-to-end data transmission. Transport layer functions typically include flow control, multiplexing, virtual circuit management, and error checking and recovery. Some examples of transport layer implementations include Transmission Control Protocol (TCP), Name Binding Protocol (NBP), and OSI transport protocols (SPX).




Network –The network layer uses logical addressing to provide routing and related functions that allow multiple data links to be combined into an internetwork. The network layer supports both connection-oriented and connectionless service from higher-layer protocols. Network layer protocols are typically routing protocols. However, other types of protocols, such as the Internet Protocol (IP), are implemented at the network layer as well. Routers reside here at the network layer. Some common routing protocols include Border Gateway Protocol (BGP), Open Shortest Path First (OSPF), and Routing Information Protocol (RIP). Packets and datagrams are sent across this layer of the OSI model (IPX).


Data Link – The data link layer provides reliable transmission of data across a physical medium. The data link layer specifies different network and protocol characteristics, including physical addressing, network topology, error notification, sequencing of frames, and flow control. The Data link layer is composed of two sublayers known as the Media Access Control (MAC) Layer and the Logical Link Control (LLC) layer.
This can be seen in the following diagram:


Physical – The physical layer defines the electrical, mechanical, procedural, and functional specifications for activating, maintaining, and deactivating the physical link between communicating network systems.
Physical layer specifications define such characteristics as voltage levels, timing of voltage changes, physical data rates, maximum transmission distances, and the physical connectors to be used. Physical layer implementations can be categorized as either LAN or WAN specifications. Some common LAN physical layer implementations include Ethernet/IEEE 802.3, Fast Ethernet, FDDI, and Token Ring/IEEE 802.5. Some common WAN physical layer implementations include High-Speed Serial Interface (HSSI), SMDS Interface Protocol (SIP), and X.21bis.